OSCILLATORY INTEGRALS OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

ZEÉV RUDNICK

CONTENTS

1.	Oscillatory integrals	1
1.1.	The principle of NON-stationary phase	1
1.2.	Van der Corput's Lemma	2
1.3.	An asymptotic expansion: The method of stationary phase	6
1.4.	An application: The Fourier transform of the unit disk	6

1. Oscillatory integrals

The Fourier transform $\widehat{f}(k) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ikx}dx$ is an example of an oscillatory integral. The general form that we take is

$$I(\lambda) := \int_{-\infty}^{\infty} A(x) e^{i\lambda\phi(x)} dx$$

where the phase function $\phi(x)$ is assumed to be real, and the amplitude A(x) is assumed to be compactly supported, or at least in the Schwartz space S.

We will need to analyze a number of such oscillatory integrals and in particular understand their decay at infinity. The trivial bound is $O(\int |A(x)|dx)$, and we want to have some cancellation as $\lambda \to \infty$.

1.1. The principle of NON-stationary phase. Suppose first that A is smooth, and either

 $\begin{array}{l} 1) \ |\phi'| \geq 1 \\ \text{or} \end{array}$

2) if A is compactly supported we may simply assume that $\phi' \neq 0$ has no critical points on the support of A.

Then as $\lambda \to +\infty$,

$$I(\lambda) \ll_N \frac{1}{\lambda^N}, \quad \forall N \ge 1$$

(the implied constants depend on A and ϕ).

Date: April 12, 2018.

Proof. The proof is by repeated integration by parts. Lets take the case that A is compactly supported. Define differential operators acting on functions supported in supp(A):

$$L = \frac{1}{i\phi'(x)}\frac{d}{dx}, \qquad L^T = -\frac{d}{dx} \circ \frac{1}{i\phi'(x)}$$

(this makes sense since $\phi' \neq 0$ on the support of A). Integration by parts shows that for any $f, g \in \mathcal{S}$,

$$\int_{-\infty}^{\infty} (Lf)(x)g(x)dx = \int_{-\infty}^{\infty} f(x)(L^{T}g)(x)dx$$

Moreover a computation shows that $L(e^{i\lambda\phi(x)}) = \lambda e^{i\lambda\phi(x)}$, so that

$$\mathcal{L}^{N}(e^{i\lambda\phi(x)}) = \lambda^{N} e^{i\lambda\phi(x)}, \qquad \forall N \ge 1.$$

Now we have

$$I(\lambda) = \int_{-\infty}^{\infty} e^{i\lambda\phi(x)} A(x) dx = \int_{-\infty}^{\infty} \frac{1}{\lambda^N} L^N(e^{i\lambda\phi(x)}) A(x) dx = \frac{1}{\lambda^N} \int_{-\infty}^{\infty} e^{i\lambda\phi(x)} (L^T)^N(A)(x) dx$$

and taking absolute values gives

1

$$|I(\lambda)| \le \frac{1}{\lambda^N} \int_{-\infty}^{\infty} |(L^T)^N(A)(x)| dx = \frac{C_N}{\lambda^N}$$

with $C_N = \int_{-\infty}^{\infty} |(L^T)^N(A)(x)| dx < \infty$ since $(L^T)^N(A)$ is also smooth and compactly supported.

1.2. Van der Corput's Lemma. In the above, it was crucial to have A smooth in order to integrate by parts. When this does not hold, the result may fail. We will need the case $A = \mathbf{1}_{[a,b]}$, when

$$I(\lambda) = \int_{a}^{b} e^{i\lambda\phi(x)} dx$$

We first assume that ϕ has no stationary (critical) points on [a, b]:

Proposition 1.1 (Van der Corput's Lemma 1). Assume that ϕ is smooth, that $\phi' \neq 0$ on [a, b], and that ϕ' is monotonic. Then

$$\Big|\int_a^b e^{i\lambda\phi(x)}dx\Big| \leq \frac{4}{\min_{x\in[a,b]}|\phi'(x)|}\cdot \frac{1}{|\lambda|}$$

Proof. Since ϕ' is continuous and nonzero on [a, b], we have

$$c := \min_{x \in [a,b]} |\phi'(x)| > 0$$

Integrating by parts, we have

$$\begin{split} I(\lambda) &= \int_{a}^{b} e^{i\lambda\phi(x)} dx = \int_{a}^{b} e^{i\lambda\phi(x)} i\lambda\phi'(x) \cdot \frac{1}{i\lambda\phi'(x)} dx \\ &= e^{i\lambda\phi(x)} \frac{1}{i\lambda\phi'(x))} \Big|_{a}^{b} - \int_{a}^{b} e^{i\lambda\phi(x)} \frac{d}{dx} \Big(\frac{1}{i\lambda\phi'(x)}\Big) dx \end{split}$$

and therefore (WLOG take $\lambda > 0$)

$$|I(\lambda)| \le \frac{1}{\lambda} \Big| \frac{e^{i\lambda\phi(b)}}{\phi'(b)} - \frac{e^{i\lambda\phi(a)}}{\phi'(a)} \Big| + \frac{1}{\lambda} \int_a^b \Big| \frac{d}{dx} \Big\{ \frac{1}{\phi'(x)} \Big\} \Big| dx.$$

Since $|\phi'| \ge c$ on [a, b], we have

$$\Big|\frac{e^{i\lambda\phi(b)}}{\phi'(b)}-\frac{e^{i\lambda\phi(a)}}{\phi'(a)}\Big|\leq \frac{1}{|\phi'(b)|}+\frac{1}{|\phi'(a)|}\leq \frac{2}{c}.$$

For the integral, since ϕ' is monotonic (and nonzero), we have $1/\phi'$ monotonic, so that $\frac{d}{dx} \left\{ \frac{1}{\phi'(x)} \right\}$ has a fixed sign. Therefore

$$\int_{a}^{b} \left| \frac{d}{dx} \left\{ \frac{1}{\phi'(x)} \right\} \right| dx = \left| \int_{a}^{b} \frac{d}{dx} \left\{ \frac{1}{\phi'(x)} \right\} dx \right| = \left| \frac{1}{\phi'(b)} - \frac{1}{\phi'(a)} \right| \le \frac{2}{c}$$

as before. Thus we find

$$|I(\lambda)| \le \frac{4/c}{\lambda}.$$

We now turn to study the case when the phase function ϕ has critical (stationary) points. Assume that all critical points are non-degenerate ($\phi''(x) \neq 0$ if $\phi'(x) = 0$). By subdividing the interval¹, we can assume that either case 1 holds (no critical points) or $\phi'' \neq 0$ on the entire interval [a, b]. In that case we have

Proposition 1.2 (Van der Corput's Lemma 2). Let ϕ be real valued and smooth on [a, b], with $\phi'' \neq 0$ on [a, b]. Then

$$\left|\int_{a}^{b} e^{i\lambda\phi(x)} dx\right| \leq \frac{8}{\sqrt{\min_{x\in[a,b]} |\phi''(x)|}} \cdot \frac{1}{\sqrt{|\lambda|}}.$$

Proof. By replacing ϕ by $\phi/\min_{x\in[a,b]} |\phi''(x)|$ and λ by $\min_{x\in[a,b]} |\phi''(x)| \cdot \lambda$, we may assume that $|\phi''(x)| \ge 1$, and WLOG take $\phi'' \ge 1$.

Let $c \in [a, b]$ be a point where the first derivative $|\phi'|$ is minimal: $|\phi'(c)| \leq |\phi'(x)|$ for all $x \in [a, b]$. Since the second derivative is non-vanishing, it cannot be the case that c is an interior local minimum/maximum of ϕ' , and hence either $\phi'(c) = 0$ or c is one of the endpoints a, b.

Assume first that $\phi'(c) = 0$, as in Figure 1. Then outside the interval $(c-\delta, c+\delta)$,

FIGURE 1. A local minimum of $|\phi'|$ where $\phi'(c) = 0$.

¹We assume that ϕ has only finitely many critical points in [a, b], which would be the case if it was real analytic.

we have $|\phi'(x)| \ge \delta$, because we assume $\phi''(x) \ge 1$ for all $x \in [a, b]$. Indeed, if $c + \delta \leq x \leq b$ then

$$\phi'(x) = \phi'(x) - \phi'(c) = \int_{c}^{x} \phi''(t)dt \ge \int_{c}^{x} 1dt = x - c \ge \delta$$

with a similar argument if $a \leq x \leq c - \delta$. Now divide the range of integration [a, b]into three subintervals

$$\int_{a}^{b} e^{i\lambda\phi(x)} dx = \int_{a}^{c-\delta} + \int_{c-\delta}^{c+\delta} + \int_{c+\delta}^{b}$$

On the interval $[a, c-\delta]$, use $|\phi'| \ge \delta$ and the fact that ϕ' is monotonic increasing (since $\phi'' \ge 1 > 0$) to invoke Proposition 1.1 giving

$$\int_{a}^{c-\delta} e^{i\lambda\phi(x)} dx \Big| \le \frac{4}{|\min(|\phi'(x)| : x \in [a, c-\delta])} \cdot \frac{1}{\lambda} \le \frac{4}{\delta} \cdot \frac{1}{\lambda}$$

with the same bound holding for $\int_{c+\delta}^{b}$.

On the middle interval $(c - \delta, c + \delta)$, just estimate trivially $|e^{i\lambda\phi(x)}| \leq 1$ giving

$$\Big|\int_{c-\delta}^{c+\delta} e^{i\lambda\phi(x)}dx\Big| \le 2\delta$$

Thus we find

$$\Big|\int_{a}^{b} e^{i\lambda\phi(x)}dx\Big| \leq \frac{8}{\delta\lambda} + 2\delta.$$

Taking $\delta = 2/\sqrt{\lambda}$ gives

$$\Big|\int_{a}^{b} e^{i\lambda\phi(x)} dx\Big| \le \frac{8}{\sqrt{\lambda}}.$$

It remains to deal with the case that c is one of the endpoints, say c = a and $\phi'(a) \neq 0$, say $\phi'(x) \geq \phi'(a) > 0$ for all $x \in [a, b]$. Then as before $\phi'(x) \geq \delta$ for $x \in [a + \delta, b]$ since $\phi'' \ge 1$, and then the previous argument shows that

$$\left| \int_{a}^{b} e^{i\lambda\phi(x)} dx \right| \le \left| \int_{a}^{a+\delta} 1 dx \right| + \left| \int_{a+\delta}^{b} e^{i\lambda\phi(x)} dx \right| \le \delta + \frac{4}{\delta\lambda} \le \frac{4}{\sqrt{\lambda}}$$

$$ag \ \delta = 2/\sqrt{\lambda}. \qquad \Box$$

on taking $\delta = 2/\sqrt{\lambda}$.

Remark: A similar result holds for the case of degenerate critical points, if we assume that for some $k \ge 2$, we have $\phi^{(k)} \ne 0$ on [a, b]:

Proposition 1.3. There is an absolute constant $c_k > 0$ so that for all smooth, real valued ϕ with $\phi^{(k)} \neq 0$ on [a, b],

$$\left| \int_{a}^{b} e^{i\lambda\phi(x)} dx \right| \leq \frac{c_{k}}{(\min_{x\in[a,b]} |\phi^{(k)}(x)|)^{1/k}} \cdot \frac{1}{|\lambda|^{1/k}}.$$

Exercise 1. The Bessel function $J_0(z) = \sum_{m=0}^{\infty} \frac{(-1)^m}{(m!)^2} \left(\frac{z}{2}\right)^{2m}$ admits an integral representation

$$J_0(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-iz\sin t} dt$$

Show that as $z \to +\infty$, $J_0(z) \ll 1/\sqrt{z}$.

We now include an amplitude

Corollary 1.4. Assume that $A(x) \in C^1[a, b]$ is differentiable, that ϕ is smooth and real valued, and that $\phi^{(k)} \neq 0$ on [a, b] (and if k = 1 also that ϕ' is monotonic). Then

$$\left|\int_{a}^{b} A(x)e^{i\lambda\phi(x)}dx\right| \leq \frac{c_{k}}{(\min_{x\in[a,b]}|\phi^{(k)}(x)|)^{1/k}} \cdot \left(|A(b)| + \int_{a}^{b} |A'(t)|dt\right) \frac{1}{|\lambda|^{1/k}}.$$

Proof. For notational simplicity we treat the case k = 2. Denote

$$J_{\lambda}(t) = \int_{a}^{t} e^{i\lambda\phi(x)} dx$$

So that $J_{\lambda}(t) = e^{i\lambda\phi(t)}$. Integrating by parts, we have

$$\int_{a}^{b} A(x)e^{i\lambda\phi(x)}dx = A(t)J_{\lambda}(t)\Big|_{a}^{b} - \int_{a}^{b} A'(t)J_{\lambda}(t)dt$$

Using our results for $A \equiv 1$ for $J_{\lambda}(t)$, we have

$$\left|A(t)J_{\lambda}(t)\right|_{a}^{b} = \left|A(b)\int_{a}^{b} e^{i\lambda\phi(x)}dx\right| \le |A(b)|\frac{8}{\sqrt{\min_{x\in[a,b]}|\phi''(x)|}} \cdot \frac{1}{\sqrt{|\lambda|}}$$

and

$$\int_{a}^{b} |A'(t)| |J_{\lambda}(t)| dt \leq \int_{a}^{b} |A'(t)| \frac{8}{\sqrt{\min_{x \in [a,b]} |\phi''(x)|}} \cdot \frac{1}{\sqrt{|\lambda|}} dt$$

Corollary 1.5. Assume that the amplitude A and the phase function ϕ are smooth, and that ϕ has finitely many critical points, all of them non-degenerate. Then

$$I(\lambda) \ll \frac{1}{\sqrt{\lambda}}, \quad \lambda \to +\infty$$

the implied constant depending on A and ϕ .

Proof. To use van der Corput's Lemma, we use a smooth partition of unity to write

$$\mathbf{1}_{[0,2\pi]} = \sum_{j} \psi_{j}$$

where ψ_j are smooth, the support of each contains at most one of the critical points, and when the support does contain a critical point x_0 (at which $\phi''(x_0) \neq 0$), we take the support sufficiently small so that $\phi'' \neq 0$ on all of $\sup \psi_j$, while the remaining ψ_j are supported away from the critical points. Hence we can write

$$I(\lambda) = \sum_{j} I_{j}(\lambda), \qquad I_{j}(\lambda) = \int_{0}^{2\pi} \psi_{j}(t) A(t) e^{i\lambda\phi(t)} dt.$$

To bound the integrals $I_j(\gamma)$ where the support of ψ_j does not include any critical points, we use the principle of NON-stationary phase, with a smooth amplitude and a phase function so that $|\phi'| \ge c_j > 0$ where $c_j = \min(|\phi'(x)| : x \in \operatorname{supp} \psi_j)$ to bound

$$I_j(\lambda) \ll \frac{1}{|\xi|^N}, \quad \forall N \ge 1.$$

For j such that $\operatorname{supp} \psi_j$ contains a critical point (unique by assumption), we can Corollary 1.4 with k = 2, since we have taken the support of such ψ_j so that $\phi'' \neq 0$ on $\operatorname{supp} \psi_j$. Hence for such j we have

$$I_j(\lambda) \ll \frac{1}{\sqrt{\lambda}}.$$

Altogether we have proven $I(\lambda) \ll \lambda^{-1/2}$.

1.3. An asymptotic expansion: The method of stationary phase. It is possible to go from upper bounds to asymptotic expansions. I will quote a typical result (we will not explicitly use this).

Theorem 1.6. Assume that the amplitude $A \in C_c^{\infty}(\mathbb{R})$ is smooth and compactly supported, and that the phase function (real valued and smooth) has a single critical point $x_0 \in \text{supp } A$, which is non-degenerate: $\phi'(x_0) = 0$, $\phi''(x_0) \neq 0$. Then

$$I(\lambda) \sim e^{i\frac{\pi}{4}\operatorname{sign}(\phi''(x_0))} A(x_0) \sqrt{\frac{2\pi}{|\phi''(x_0)|}} \cdot \frac{e^{i\lambda\phi(x_0)}}{\sqrt{\lambda}}, \quad \text{as } \lambda \to +\infty.$$

1.4. An application: The Fourier transform of the unit disk. We want to bound the Fourier transform of the unit disk $B(0,1) \subset \mathbb{R}^2$: If $\chi(x) = 1$, $|x| \leq 1$, and is zero otherwise, the Fourier transform is (we have dropped the factor of -2π from the exponent)

$$\widehat{\chi}(\xi) = \int_{|x| \le 1} e^{i\langle \xi, x \rangle} dx, \qquad \xi \in \mathbb{R}^2.$$

Proposition 1.7.

$$\widehat{\chi}(\xi) \ll \frac{1}{1+|\xi|^{3/2}}.$$

Proof. We convert the 2-dimensional integral to a one-dimensional integral, to which we can apply the van der Corput bound, by using Green's theorem. Recall that Green's theorem says that for a bounded planar domain D, with a piecewise smooth boundary ∂D , we have for $A, B \in C^2(\mathbb{R}^2)$,

$$\int_{D} \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right) dx \wedge dy = \oint_{\partial D} A dx + B dy$$

where the line integral over the boundary ∂D is taken counterclockwise.

For us, D = B(0,1) is the unit disk, with boundary $\partial D = S^1$ the unit circle, and we want to find A, B so that

$$\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} = e^{i(ax+by)}, \quad \xi = (a,b) \neq 0.$$

A solution is to take

$$A=\frac{ibe^{i(ax+by)}}{|\xi|^2}, \quad B=\frac{-iae^{i(ax+by)}}{|\xi|^2}$$

Hence we find

$$\widehat{\chi}(\xi) = \frac{i}{|\xi|^2} \int_{\partial D} e^{i(ax+by)} \ (bdx - ady).$$

Parameterizing $\partial D = S^1$ by arc-length: $\gamma(t) = (\cos t, \sin t)$, which runs counterclockwise if t runs from 0 to 2π , we obtain

$$\widehat{\chi}(\xi) = \frac{i}{|\xi|^2} \int_0^{2\pi} e^{i(a\cos t + b\sin t)} (-b\sin t - a\cos t) dt = \frac{i}{|\xi|} I(|\xi|)$$

where

$$I(\lambda) = \int_0^{2\pi} A_{\xi}(t) e^{i\lambda\phi_{\xi}(t)} dt$$

is an oscillatory integral, with amplitude

$$A_{\xi}(t) = \langle \dot{\gamma}(t), \frac{\xi^{\perp}}{|\xi|} \rangle = \frac{-a\cos t - b\sin t}{\sqrt{a^2 + b^2}}$$

where $\xi^{\perp} = (b, -a)$, and phase function

$$\phi_{\xi}(t) = \langle \gamma(t), \frac{\xi}{|\xi|} \rangle = \frac{a \cos t + b \sin t}{\sqrt{a^2 + b^2}}.$$

We want to apply our estimates on oscillatory integrals to this case. Note that both the amplitude and the phase function depend on $\xi/|\xi|$, so it is important to make sure that our estimates our uniform in $\xi/|\xi| \in S^1$.

The phase function has two critical points $\phi'(t) = \langle \dot{\gamma}(t), \xi/|\xi| \rangle = 0$, when $\dot{\gamma}(t) \perp \xi$, i.e. when $\dot{\gamma}(t) = \pm \xi^{\perp}/|\xi|$ (note $\dot{\gamma}$ is a unit vector), with $\xi^{\perp} = (b, -a)$, say at t_0 and therefore also at $t_0 + \pi$.

We claim that these critical points are non-degenerate: The second derivative of the phase function is

$$\phi''(t_0) = \langle \ddot{\gamma}(t_0), \xi \rangle.$$

Now further note that $\langle \ddot{\gamma}, \dot{\gamma} \rangle = 0$ (which follows by direct computation or better yet by differentiating $|\dot{\gamma}|^2 = 1$, which is arc-length parameterization condition), and since also $\xi \perp \dot{\gamma}(t_0)$, we must have

$$\ddot{\gamma}(t_0) = \pm \kappa \frac{\xi}{|\xi|}$$

where $\kappa = |\ddot{\gamma}(t_0)|$; note that here $|\ddot{\gamma}| \equiv 1$ so $\kappa = 1$ and hence²

$$\phi''(t_0) = \langle \ddot{\gamma}(t_0), \frac{\xi}{|\xi|} \rangle = \pm \langle \frac{\xi}{|\xi|}, \frac{\xi}{|\xi|} \rangle = \pm 1 \neq 0.$$

To use van der Corput's Lemma, we use a smooth partition of unity to write

$$\mathbf{1}_{[0,2\pi]} = \psi_1 + \psi_2 + \psi_3$$

where ψ_j are smooth, ψ_1 is supported in say $(t_0 - 0.1, t_0 + 0.1)$, ψ_1 is supported in $(t_0 + \pi - 0.1, t_0 + \pi + 0.1)$ and ψ_3 is supported away from the critical points $t_0, t_0 + \pi$. This gives

with

$$I(\lambda) = I_1 + I_2 + I_3$$
$$I_j(\lambda) = \int_0^{2\pi} \psi_j(t) A(t) e^{i\lambda\phi(t)} dt.$$

²For general D, $|\ddot{\gamma}| = \kappa$ will be the curvature of ∂D ; if we assume that the boundary ∂D has nowhere vanishing curvature, then this computation shows that the critical points are all non-degenerate.

ZEÉV RUDNICK

For the integrals I_1 , I_2 we can use van der Corput's Lemma to deduce that

$$|I_1(|\xi|)| \le \frac{8}{(\min_{x \in [t_0 - 0.1, t_0 + 0.1]} |\phi''(x)|)^{1/2}} \cdot \left(|A(t_0 + 0.1)| + \int_0^{2\pi} |A'(t)| dt\right) \frac{1}{|\xi|^{1/2}}.$$

We have

$$|A(t)| = |\langle \dot{\gamma}(t), \frac{\xi}{|\xi|} \rangle| \le |\dot{\gamma}| \cdot |\frac{\xi}{|\xi|} = 1$$

and likewise $|A'(t)| \leq 1$. Since $\phi''(t_0) = \pm 1$, we have

$$\min(|\phi''(t)| : t_0 - 0.1 < t < t_0 + 0.1) > c_0$$

for some positive constant c_0 . Hence we deduce from van der Corput's Lemma that there is some C > 0, independent of ξ , so that

$$|I_1(|\xi|)|, |I_2(|\xi|)| \le \frac{C}{|\xi|^{1/2}}.$$

To bound the third integral $I_3(\gamma)$, we use the principle of NON-stationary phase, with a smooth amplitude and a phase function so that $|\phi'| \ge c_3 > 0$ (uniformly in ξ) to bound

$$I_3 \ll \frac{1}{|\xi|^N}, \quad \forall N \ge 1.$$

Altogether we obtain that uniformly in $|\xi| \ge 1$,

$$I(\lambda) \le \frac{c_4}{\sqrt{\lambda}}$$
$$|\widehat{\chi}(\xi)| \le \frac{c_4}{|\xi|^{3/2}}.$$

and hence

$$\int_{|x|\leq 1}e^{i\langle x,\xi\rangle}d^3x\ll \frac{1}{1+|\xi|^2},\quad \xi\in\mathbb{R}^3.$$

Hint: Here we can directly evaluate the Fourier transform in elementary terms!