OSCILLATORY INTEGRALS OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

ZEÉV RUDNICK

Contents

1. Oscillatory integrals 1
1.1. The principle of NON-stationary phase 1
1.2. Van der Corput's Lemma 2
1.3. An asymptotic expansion: The method of stationary phase 6
1.4. An application: The Fourier transform of the unit disk 6

1. Oscillatory integrals

The Fourier transform $\widehat{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i k x} d x$ is an example of an oscillatory integral. The general form that we take is

$$
I(\lambda):=\int_{-\infty}^{\infty} A(x) e^{i \lambda \phi(x)} d x
$$

where the phase function $\phi(x)$ is assumed to be real, and the amplitude $A(x)$ is assumed to be compactly supported, or at least in the Schwartz space \mathcal{S}.

We will need to analyze a number of such oscillatory integrals and in particular understand their decay at infinity. The trivial bound is $O\left(\int|A(x)| d x\right)$, and we want to have some cancellation as $\lambda \rightarrow \infty$.
1.1. The principle of NON-stationary phase. Suppose first that A is smooth, and either

1) $\left|\phi^{\prime}\right| \geq 1$
or
2) if A is compactly supported we may simply assume that $\phi^{\prime} \neq 0$ has no critical points on the support of A.

Then as $\lambda \rightarrow+\infty$,

$$
I(\lambda) \ll_{N} \frac{1}{\lambda^{N}}, \quad \forall N \geq 1
$$

(the implied constants depend on A and ϕ).

[^0]Proof. The proof is by repeated integration by parts. Lets take the case that A is compactly supported. Define differential operators acting on functions supported in $\operatorname{supp}(A)$:

$$
L=\frac{1}{i \phi^{\prime}(x)} \frac{d}{d x}, \quad L^{T}=-\frac{d}{d x} \circ \frac{1}{i \phi^{\prime}(x)}
$$

(this makes sense since $\phi^{\prime} \neq 0$ on the support of A). Integration by parts shows that for any $f, g \in \mathcal{S}$,

$$
\int_{-\infty}^{\infty}(L f)(x) g(x) d x=\int_{-\infty}^{\infty} f(x)\left(L^{T} g\right)(x) d x
$$

Moreover a computation shows that $L\left(e^{i \lambda \phi(x)}\right)=\lambda e^{i \lambda \phi(x)}$, so that

$$
L^{N}\left(e^{i \lambda \phi(x)}\right)=\lambda^{N} e^{i \lambda \phi(x)}, \quad \forall N \geq 1
$$

Now we have
$I(\lambda)=\int_{-\infty}^{\infty} e^{i \lambda \phi(x)} A(x) d x=\int_{-\infty}^{\infty} \frac{1}{\lambda^{N}} L^{N}\left(e^{i \lambda \phi(x)}\right) A(x) d x=\frac{1}{\lambda^{N}} \int_{-\infty}^{\infty} e^{i \lambda \phi(x)}\left(L^{T}\right)^{N}(A)(x) d x$ and taking absolute values gives

$$
|I(\lambda)| \leq \frac{1}{\lambda^{N}} \int_{-\infty}^{\infty}\left|\left(L^{T}\right)^{N}(A)(x)\right| d x=\frac{C_{N}}{\lambda^{N}}
$$

with $C_{N}=\int_{-\infty}^{\infty}\left|\left(L^{T}\right)^{N}(A)(x)\right| d x<\infty$ since $\left(L^{T}\right)^{N}(A)$ is also smooth and compactly supported.
1.2. Van der Corput's Lemma. In the above, it was crucial to have A smooth in order to integrate by parts. When this does not hold, the result may fail. We will need the case $A=\mathbf{1}_{[a, b]}$, when

$$
I(\lambda)=\int_{a}^{b} e^{i \lambda \phi(x)} d x
$$

We first assume that ϕ has no stationary (critical) points on $[a, b]$:
Proposition 1.1 (Van der Corput's Lemma 1). Assume that ϕ is smooth, that $\phi^{\prime} \neq 0$ on $[a, b]$, and that ϕ^{\prime} is monotonic. Then

$$
\left|\int_{a}^{b} e^{i \lambda \phi(x)} d x\right| \leq \frac{4}{\min _{x \in[a, b]}\left|\phi^{\prime}(x)\right|} \cdot \frac{1}{|\lambda|}
$$

Proof. Since ϕ^{\prime} is continuous and nonzero on $[a, b]$, we have

$$
c:=\min _{x \in[a, b]}\left|\phi^{\prime}(x)\right|>0
$$

Integrating by parts, we have

$$
\begin{aligned}
I(\lambda)=\int_{a}^{b} e^{i \lambda \phi(x)} d x & =\int_{a}^{b} e^{i \lambda \phi(x)} i \lambda \phi^{\prime}(x) \cdot \frac{1}{i \lambda \phi^{\prime}(x)} d x \\
& =\left.e^{i \lambda \phi(x)} \frac{1}{\left.i \lambda \phi^{\prime}(x)\right)}\right|_{a} ^{b}-\int_{a}^{b} e^{i \lambda \phi(x)} \frac{d}{d x}\left(\frac{1}{i \lambda \phi^{\prime}(x)}\right) d x
\end{aligned}
$$

and therefore (WLOG take $\lambda>0$)

$$
|I(\lambda)| \leq \frac{1}{\lambda}\left|\frac{e^{i \lambda \phi(b)}}{\phi^{\prime}(b)}-\frac{e^{i \lambda \phi(a)}}{\phi^{\prime}(a)}\right|+\frac{1}{\lambda} \int_{a}^{b}\left|\frac{d}{d x}\left\{\frac{1}{\phi^{\prime}(x)}\right\}\right| d x .
$$

Since $\left|\phi^{\prime}\right| \geq c$ on $[a, b]$, we have

$$
\left|\frac{e^{i \lambda \phi(b)}}{\phi^{\prime}(b)}-\frac{e^{i \lambda \phi(a)}}{\phi^{\prime}(a)}\right| \leq \frac{1}{\left|\phi^{\prime}(b)\right|}+\frac{1}{\left|\phi^{\prime}(a)\right|} \leq \frac{2}{c}
$$

For the integral, since ϕ^{\prime} is monotonic (and nonzero), we have $1 / \phi^{\prime}$ monotonic, so that $\frac{d}{d x}\left\{\frac{1}{\phi^{\prime}(x)}\right\}$ has a fixed sign. Therefore

$$
\int_{a}^{b}\left|\frac{d}{d x}\left\{\frac{1}{\phi^{\prime}(x)}\right\}\right| d x=\left|\int_{a}^{b} \frac{d}{d x}\left\{\frac{1}{\phi^{\prime}(x)}\right\} d x\right|=\left|\frac{1}{\phi^{\prime}(b)}-\frac{1}{\phi^{\prime}(a)}\right| \leq \frac{2}{c}
$$

as before. Thus we find

$$
|I(\lambda)| \leq \frac{4 / c}{\lambda}
$$

We now turn to study the case when the phase function ϕ has critical (stationary) points. Assume that all critical points are non-degenerate $\left(\phi^{\prime \prime}(x) \neq 0\right.$ if $\left.\phi^{\prime}(x)=0\right)$. By subdividing the interval ${ }^{1}$, we can assume that either case 1 holds (no critical points) or $\phi^{\prime \prime} \neq 0$ on the entire interval $[a, b]$. In that case we have

Proposition 1.2 (Van der Corput's Lemma 2). Let ϕ be real valued and smooth on $[a, b]$, with $\phi^{\prime \prime} \neq 0$ on $[a, b]$. Then

$$
\left|\int_{a}^{b} e^{i \lambda \phi(x)} d x\right| \leq \frac{8}{\sqrt{\min _{x \in[a, b]}\left|\phi^{\prime \prime}(x)\right|}} \cdot \frac{1}{\sqrt{|\lambda|}}
$$

Proof. By replacing ϕ by $\phi / \min _{x \in[a, b]}\left|\phi^{\prime \prime}(x)\right|$ and λ by $\min _{x \in[a, b]}\left|\phi^{\prime \prime}(x)\right| \cdot \lambda$, we may assume that $\left|\phi^{\prime \prime}(x)\right| \geq 1$, and WLOG take $\phi^{\prime \prime} \geq 1$.

Let $c \in[a, b]$ be a point where the first derivative $\left|\phi^{\prime}\right|$ is minimal: $\left|\phi^{\prime}(c)\right| \leq\left|\phi^{\prime}(x)\right|$ for all $x \in[a, b]$. Since the second derivative is non-vanishing, it cannot be the case that c is an interior local minimum/maximum of ϕ^{\prime}, and hence either $\phi^{\prime}(c)=0$ or c is one of the endpoints a, b.

Assume first that $\phi^{\prime}(c)=0$, as in Figure 1. Then outside the interval $(c-\delta, c+\delta)$,

Figure 1. A local minimum of $\left|\phi^{\prime}\right|$ where $\phi^{\prime}(c)=0$.

[^1]we have $\left|\phi^{\prime}(x)\right| \geq \delta$, because we assume $\phi^{\prime \prime}(x) \geq 1$ for all $x \in[a, b]$. Indeed, if $c+\delta \leq x \leq b$ then
$$
\phi^{\prime}(x)=\phi^{\prime}(x)-\phi^{\prime}(c)=\int_{c}^{x} \phi^{\prime \prime}(t) d t \geq \int_{c}^{x} 1 d t=x-c \geq \delta
$$
with a similar argument if $a \leq x \leq c-\delta$. Now divide the range of integration $[a, b]$ into three subintervals
$$
\int_{a}^{b} e^{i \lambda \phi(x)} d x=\int_{a}^{c-\delta}+\int_{c-\delta}^{c+\delta}+\int_{c+\delta}^{b}
$$

On the interval $[a, c-\delta]$, use $\left|\phi^{\prime}\right| \geq \delta$ and the fact that ϕ^{\prime} is monotonic increasing (since $\phi^{\prime \prime} \geq 1>0$) to invoke Proposition 1.1 giving

$$
\left|\int_{a}^{c-\delta} e^{i \lambda \phi(x)} d x\right| \leq \frac{4}{\mid \min \left(\left|\phi^{\prime}(x)\right|: x \in[a, c-\delta]\right)} \cdot \frac{1}{\lambda} \leq \frac{4}{\delta} \cdot \frac{1}{\lambda}
$$

with the same bound holding for $\int_{c+\delta}^{b}$.
On the middle interval $(c-\delta, c+\delta)$, just estimate trivially $\left|e^{i \lambda \phi(x)}\right| \leq 1$ giving

$$
\left|\int_{c-\delta}^{c+\delta} e^{i \lambda \phi(x)} d x\right| \leq 2 \delta
$$

Thus we find

$$
\left|\int_{a}^{b} e^{i \lambda \phi(x)} d x\right| \leq \frac{8}{\delta \lambda}+2 \delta
$$

Taking $\delta=2 / \sqrt{\lambda}$ gives

$$
\left|\int_{a}^{b} e^{i \lambda \phi(x)} d x\right| \leq \frac{8}{\sqrt{\lambda}}
$$

It remains to deal with the case that c is one of the endpoints, say $c=a$ and $\phi^{\prime}(a) \neq 0$, say $\phi^{\prime}(x) \geq \phi^{\prime}(a)>0$ for all $x \in[a, b]$. Then as before $\phi^{\prime}(x) \geq \delta$ for $x \in[a+\delta, b]$ since $\phi^{\prime \prime} \geq 1$, and then the previous argument shows that

$$
\left|\int_{a}^{b} e^{i \lambda \phi(x)} d x\right| \leq\left|\int_{a}^{a+\delta} 1 d x\right|+\left|\int_{a+\delta}^{b} e^{i \lambda \phi(x)} d x\right| \leq \delta+\frac{4}{\delta \lambda} \leq \frac{4}{\sqrt{\lambda}}
$$

on taking $\delta=2 / \sqrt{\lambda}$.
Remark: A similar result holds for the case of degenerate critical points, if we assume that for some $k \geq 2$, we have $\phi^{(k)} \neq 0$ on $[a, b]$:

Proposition 1.3. There is an absolute constant $c_{k}>0$ so that for all smooth, real valued ϕ with $\phi^{(k)} \neq 0$ on $[a, b]$,

$$
\left|\int_{a}^{b} e^{i \lambda \phi(x)} d x\right| \leq \frac{c_{k}}{\left(\min _{x \in[a, b]}\left|\phi^{(k)}(x)\right|\right)^{1 / k}} \cdot \frac{1}{|\lambda|^{1 / k}}
$$

Exercise 1. The Bessel function $J_{0}(z)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{(m!)^{2}}\left(\frac{z}{2}\right)^{2 m}$ admits an integral representation

$$
J_{0}(z)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i z \sin t} d t
$$

Show that as $z \rightarrow+\infty, J_{0}(z) \ll 1 / \sqrt{z}$.
We now include an amplitude

Corollary 1.4. Assume that $A(x) \in C^{1}[a, b]$ is differentiable, that ϕ is smooth and real valued, and that $\phi^{(k)} \neq 0$ on $[a, b]$ (and if $k=1$ also that ϕ^{\prime} is monotonic). Then

$$
\left|\int_{a}^{b} A(x) e^{i \lambda \phi(x)} d x\right| \leq \frac{c_{k}}{\left(\min _{x \in[a, b]}\left|\phi^{(k)}(x)\right|\right)^{1 / k}} \cdot\left(|A(b)|+\int_{a}^{b}\left|A^{\prime}(t)\right| d t\right) \frac{1}{|\lambda|^{1 / k}}
$$

Proof. For notational simplicity we treat the case $k=2$. Denote

$$
J_{\lambda}(t)=\int_{a}^{t} e^{i \lambda \phi(x)} d x
$$

So that $J_{\lambda}(t)=e^{i \lambda \phi(t)}$. Integrating by parts, we have

$$
\int_{a}^{b} A(x) e^{i \lambda \phi(x)} d x=\left.A(t) J_{\lambda}(t)\right|_{a} ^{b}-\int_{a}^{b} A^{\prime}(t) J_{\lambda}(t) d t
$$

Using our results for $A \equiv 1$ for $J_{\lambda}(t)$, we have

$$
\left|A(t) J_{\lambda}(t)\right|_{a}^{b}\left|=\left|A(b) \int_{a}^{b} e^{i \lambda \phi(x)} d x\right| \leq|A(b)| \frac{8}{\sqrt{\min _{x \in[a, b]}\left|\phi^{\prime \prime}(x)\right|}} \cdot \frac{1}{\sqrt{|\lambda|}}\right.
$$

and

$$
\int_{a}^{b}\left|A^{\prime}(t)\right|\left|J_{\lambda}(t)\right| d t \leq \int_{a}^{b}\left|A^{\prime}(t)\right| \frac{8}{\sqrt{\min _{x \in[a, b]}\left|\phi^{\prime \prime}(x)\right|}} \cdot \frac{1}{\sqrt{|\lambda|}} d t
$$

Corollary 1.5. Assume that the amplitude A and the phase function ϕ are smooth, and that ϕ has finitely many critical points, all of them non-degenerate. Then

$$
I(\lambda) \ll \frac{1}{\sqrt{\lambda}}, \quad \lambda \rightarrow+\infty
$$

the implied constant depending on A and ϕ.
Proof. To use van der Corput's Lemma, we use a smooth partition of unity to write

$$
\mathbf{1}_{[0,2 \pi]}=\sum_{j} \psi_{j}
$$

where ψ_{j} are smooth, the support of each contains at most one of the critical points, and when the support does contain a critical point x_{0} (at which $\phi^{\prime \prime}\left(x_{0}\right) \neq 0$), we take the support sufficiently small so that $\phi^{\prime \prime} \neq 0$ on all of $\operatorname{supp} \psi_{j}$, while the remaining ψ_{j} are supported away from the critical points. Hence we can write

$$
I(\lambda)=\sum_{j} I_{j}(\lambda), \quad I_{j}(\lambda)=\int_{0}^{2 \pi} \psi_{j}(t) A(t) e^{i \lambda \phi(t)} d t
$$

To bound the integrals $I_{j}(\gamma)$ where the support of ψ_{j} does not include any critical points, we use the principle of NON-stationary phase, with a smooth amplitude and a phase function so that $\left|\phi^{\prime}\right| \geq c_{j}>0$ where $c_{j}=\min \left(\left|\phi^{\prime}(x)\right|: x \in \operatorname{supp} \psi_{j}\right)$ to bound

$$
I_{j}(\lambda) \ll \frac{1}{|\xi|^{N}}, \quad \forall N \geq 1
$$

For j such that $\operatorname{supp} \psi_{j}$ contains a critical point (unique by assumption), we can Corollary 1.4 with $k=2$, since we have taken the support of such ψ_{j} so that $\phi^{\prime \prime} \neq 0$ on $\operatorname{supp} \psi_{j}$. Hence for such j we have

$$
I_{j}(\lambda) \ll \frac{1}{\sqrt{\lambda}}
$$

Altogether we have proven $I(\lambda) \ll \lambda^{-1 / 2}$.
1.3. An asymptotic expansion: The method of stationary phase. It is possible to go from upper bounds to asymptotic expansions. I will quote a typical result (we will not explicitly use this).

Theorem 1.6. Assume that the amplitude $A \in C_{c}^{\infty}(\mathbb{R})$ is smooth and compactly supported, and that the phase function (real valued and smooth) has a single critical point $x_{0} \in \operatorname{supp} A$, which is non-degenerate: $\phi^{\prime}\left(x_{0}\right)=0, \phi^{\prime \prime}\left(x_{0}\right) \neq 0$. Then

$$
I(\lambda) \sim e^{i \frac{\pi}{4} \operatorname{sign}\left(\phi^{\prime \prime}\left(x_{0}\right)\right)} A\left(x_{0}\right) \sqrt{\frac{2 \pi}{\left|\phi^{\prime \prime}\left(x_{0}\right)\right|}} \cdot \frac{e^{i \lambda \phi\left(x_{0}\right)}}{\sqrt{\lambda}}, \quad \text { as } \lambda \rightarrow+\infty
$$

1.4. An application: The Fourier transform of the unit disk. We want to bound the Fourier transform of the unit disk $B(0,1) \subset \mathbb{R}^{2}$: If $\chi(x)=1,|x| \leq 1$, and is zero otherwise, the Fourier transform is (we have dropped the factor of -2π from the exponent)

$$
\widehat{\chi}(\xi)=\int_{|x| \leq 1} e^{i\langle\xi, x\rangle} d x, \quad \xi \in \mathbb{R}^{2}
$$

Proposition 1.7.

$$
\widehat{\chi}(\xi) \ll \frac{1}{1+|\xi|^{3 / 2}}
$$

Proof. We convert the 2-dimensional integral to a one-dimensional integral, to which we can apply the van der Corput bound, by using Green's theorem. Recall that Green's theorem says that for a bounded planar domain D, with a piecewise smooth boundary ∂D, we have for $\mathrm{A}, B \in C^{2}\left(\mathbb{R}^{2}\right)$,

$$
\int_{D}\left(\frac{\partial B}{\partial x}-\frac{\partial A}{\partial y}\right) d x \wedge d y=\oint_{\partial D} A d x+B d y
$$

where the line integral over the boundary ∂D is taken counterclockwise.
For us, $D=B(0,1)$ is the unit disk, with boundary $\partial D=S^{1}$ the unit circle, and we want to find A, B so that

$$
\frac{\partial B}{\partial x}-\frac{\partial A}{\partial y}=e^{i(a x+b y)}, \quad \xi=(a, b) \neq 0
$$

A solution is to take

$$
A=\frac{i b e^{i(a x+b y)}}{|\xi|^{2}}, \quad B=\frac{-i a e^{i(a x+b y)}}{|\xi|^{2}}
$$

Hence we find

$$
\widehat{\chi}(\xi)=\frac{i}{|\xi|^{2}} \int_{\partial D} e^{i(a x+b y)}(b d x-a d y)
$$

Parameterizing $\partial D=S^{1}$ by arc-length: $\gamma(t)=(\cos t, \sin t)$, which runs counterclockwise if t runs from 0 to 2π, we obtain

$$
\widehat{\chi}(\xi)=\frac{i}{|\xi|^{2}} \int_{0}^{2 \pi} e^{i(a \cos t+b \sin t)}(-b \sin t-a \cos t) d t=\frac{i}{|\xi|} I(|\xi|)
$$

where

$$
I(\lambda)=\int_{0}^{2 \pi} A_{\xi}(t) e^{i \lambda \phi_{\xi}(t)} d t
$$

is an oscillatory integral, with amplitude

$$
A_{\xi}(t)=\left\langle\dot{\gamma}(t), \frac{\xi^{\perp}}{|\xi|}\right\rangle=\frac{-a \cos t-b \sin t}{\sqrt{a^{2}+b^{2}}}
$$

where $\xi^{\perp}=(b,-a)$, and phase function

$$
\phi_{\xi}(t)=\left\langle\gamma(t), \frac{\xi}{|\xi|}\right\rangle=\frac{a \cos t+b \sin t}{\sqrt{a^{2}+b^{2}}}
$$

We want to apply our estimates on oscillatory integrals to this case. Note that both the amplitude and the phase function depend on $\xi /|\xi|$, so it is important to make sure that our estimates our uniform in $\xi /|\xi| \in S^{1}$.

The phase function has two critical points $\phi^{\prime}(t)=\langle\dot{\gamma}(t), \xi /| \xi| \rangle=0$, when $\dot{\gamma}(t) \perp$ ξ, i.e. when $\dot{\gamma}(t)= \pm \xi^{\perp} /|\xi|$ (note $\dot{\gamma}$ is a unit vector), with $\xi^{\perp}=(b,-a)$, say at t_{0} and therefore also at $t_{0}+\pi$.

We claim that these critical points are non-degenerate: The second derivative of the phase function is

$$
\phi^{\prime \prime}\left(t_{0}\right)=\left\langle\ddot{\gamma}\left(t_{0}\right), \xi\right\rangle .
$$

Now further note that $\langle\ddot{\gamma}, \dot{\gamma}\rangle=0$ (which follows by direct computation or better yet by differentiating $|\dot{\gamma}|^{2}=1$, which is arc-length parameterization condition), and since also $\xi \perp \dot{\gamma}\left(t_{0}\right)$, we must have

$$
\ddot{\gamma}\left(t_{0}\right)= \pm \kappa \frac{\xi}{|\xi|}
$$

where $\kappa=\left|\ddot{\gamma}\left(t_{0}\right)\right| ;$ note that here $|\ddot{\gamma}| \equiv 1$ so $\kappa=1$ and hence ${ }^{2}$

$$
\phi^{\prime \prime}\left(t_{0}\right)=\left\langle\ddot{\gamma}\left(t_{0}\right), \frac{\xi}{|\xi|}\right\rangle= \pm\left\langle\frac{\xi}{|\xi|}, \frac{\xi}{|\xi|}\right\rangle= \pm 1 \neq 0 .
$$

To use van der Corput's Lemma, we use a smooth partition of unity to write

$$
\mathbf{1}_{[0,2 \pi]}=\psi_{1}+\psi_{2}+\psi_{3}
$$

where ψ_{j} are smooth, ψ_{1} is supported in say $\left(t_{0}-0.1, t_{0}+0.1\right), \psi_{1}$ is supported in $\left(t_{0}+\pi-0.1, t_{0}+\pi+0.1\right)$ and ψ_{3} is supported away from the critical points $t_{0}, t_{0}+\pi$. This gives

$$
I(\lambda)=I_{1}+I_{2}+I_{3}
$$

with

$$
I_{j}(\lambda)=\int_{0}^{2 \pi} \psi_{j}(t) A(t) e^{i \lambda \phi(t)} d t
$$

[^2]For the integrals I_{1}, I_{2} we can use van der Corput's Lemma to deduce that

$$
\left|I_{1}(|\xi|)\right| \leq \frac{8}{\left(\min _{x \in\left[t_{0}-0.1, t_{0}+0.1\right]}\left|\phi^{\prime \prime}(x)\right|\right)^{1 / 2}} \cdot\left(\left|A\left(t_{0}+0.1\right)\right|+\int_{0}^{2 \pi}\left|A^{\prime}(t)\right| d t\right) \frac{1}{|\xi|^{1 / 2}}
$$

We have

$$
\left.|A(t)|=\left|\left\langle\dot{\gamma}(t), \frac{\xi}{|\xi|}\right\rangle\right| \leq|\dot{\gamma}| \cdot \right\rvert\, \frac{\xi}{|\xi|}=1
$$

and likewise $\left|A^{\prime}(t)\right| \leq 1$. Since $\phi^{\prime \prime}\left(t_{0}\right)= \pm 1$, we have

$$
\min \left(\left|\phi^{\prime \prime}(t)\right|: t_{0}-0.1<t<t_{0}+0.1\right)>c_{0}
$$

for some positive constant c_{0}. Hence we deduce from van der Corput's Lemma that there is some $C>0$, independent of ξ, so that

$$
\left|I_{1}(|\xi|)\right|,\left|I_{2}(|\xi|)\right| \leq \frac{C}{|\xi|^{1 / 2}}
$$

To bound the third integral $I_{3}(\gamma)$, we use the principle of NON-stationary phase, with a smooth amplitude and a phase function so that $\left|\phi^{\prime}\right| \geq c_{3}>0$ (uniformly in $\xi)$ to bound

$$
I_{3} \ll \frac{1}{|\xi|^{N}}, \quad \forall N \geq 1
$$

Altogether we obtain that uniformly in $|\xi| \geq 1$,

$$
I(\lambda) \leq \frac{c_{4}}{\sqrt{\lambda}}
$$

and hence

$$
|\widehat{\chi}(\xi)| \leq \frac{c_{4}}{|\xi|^{3 / 2}}
$$

Exercise 2. Show that in dimension 3, we have an estimate for the Fourier transform of the unit ball

$$
\int_{|x| \leq 1} e^{i\langle x, \xi\rangle} d^{3} x \ll \frac{1}{1+|\xi|^{2}}, \quad \xi \in \mathbb{R}^{3}
$$

Hint: Here we can directly evaluate the Fourier transform in elementary terms!

[^0]: Date: April 12, 2018.

[^1]: ${ }^{1}$ We assume that ϕ has only finitely many critical points in $[a, b]$, which would be the case if it was real analytic.

[^2]: ${ }^{2}$ For general $D,|\ddot{\gamma}|=\kappa$ will be the curvature of ∂D; if we assume that the boundary ∂D has nowhere vanishing curvature, then this computation shows that the critical points are all non-degenerate.

