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1. OSCILLATORY INTEGRALS

The Fourier transform f(k:) = [ f(z)e"?™*2dy is an example of an oscillatory
integral. The general form that we take is

I(\) = / A(z)e?®) dg

where the phase function ¢(z) is assumed to be real, and the amplitude A(z) is
assumed to be compactly supported, or at least in the Schwartz space S.

We will need to analyze a number of such oscillatory integrals and in particular
understand their decay at infinity. The trivial bound is O( [ |A(z)|dx), and we want
to have some cancellation as A — oo.

1.1. The principle of NON-stationary phase. Suppose first that A is smooth,
and either

1) [¢' =1

or

2) if A is compactly supported we may simply assume that ¢’ # 0 has no critical
points on the support of A.

Then as A — 400,

I()\) <N VN > 1

AN

(the implied constants depend on A and ¢).

Date: April 12, 2018.



2 ZEEV RUDNICK

Proof. The proof is by repeated integration by parts. Lets take the case that A is
compactly supported. Define differential operators acting on functions supported
in supp(A):

1 4 r_d 1

il (x) dx’ T iz i¢' ()
(this makes sense since ¢’ # 0 on the support of A). Integration by parts shows
that for any f,g € S,

[(f dm—/f (LT g)(x)dx

Moreover a computation shows that L(e*?(®)) = \e?*¢() 5o that

LN (@) = \Niro() VN > 1.

Now we have
o) = [meA¢( ) A(w)dz = /W Sy D) A = TN/,OO"’ 2@ (LT)N (A) (2)dae
and taking absolute values gives

)< 5 [ 1E W@l = X

oo

with Cy = [ [(LT)N(A)(z)|dz < oo since (LT)N(A) is also smooth and com-
pactly supported. (I

1.2. Van der Corput’s Lemma. In the above, it was crucial to have A smooth
in order to integrate by parts. When this does not hold, the result may fail. We
will need the case A = 1(,), when

b
I()\):/ @) g

We first assume that ¢ has no stationary (critical) points on [a, b]:

Proposition 1.1 (Van der Corput’s Lemma 1). Assume that ¢ is smooth, that
¢’ #0 on [a,b], and that ¢’ is monotonic. Then

b
. 4 1
iAp(2) g ‘ <= .=
e z| < — .
/a mingepa ) [¢'(z)]  [Al
Proof. Since ¢’ is continuous and nonzero on [a, b], we have

c:= mln |¢( )| > 0.
z€la,

Integrating by parts, we have
" o) Y e 1
I(\) = A d = ! A d
)= [ M0t [T @) s
irg(a) 1

b b Jiro(x) 4 1
ir' (2)) a_/a o <M¢/( ))dm

b

=€

and therefore (WLOG take X\ > 0)
oy < LEN0 e
“Aaler) ()
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Since |¢'| > ¢ on [a, b], we have

eird(d)  gird(a) 1 1 9
IO @ | S Eo) P@ e
For the integral, since ¢’ is monotonic (and nonzero), we have 1/¢’ monotonic,

so that d%{ﬁ} has a fixed sign. Therefore

b b
[ atlame=1 [ &lombel = lom - 7wl

as before. Thus we find

O

We now turn to study the case when the phase function ¢ has critical (stationary)
points. Assume that all critical points are non-degenerate (¢ (z) # 0 if ¢'(z) = 0).
By subdividing the interval', we can assume that either case 1 holds (no critical
points) or ¢” # 0 on the entire interval [a,b]. In that case we have

Proposition 1.2 (Van der Corput’s Lemma 2). Let ¢ be real valued and smooth
on [a,b], with ¢ # 0 on [a,b]. Then

8 1

b
irp(@) g ‘ < .
e x| < - .
‘ /a \/mlnxe[mb] |¢H($)| V |)‘|

Proof. By replacing ¢ by ¢/ mingepq) [¢” ()| and A by mingepq ) [¢”(2)| - A, we
may assume that |¢”(z)| > 1, and WLOG take ¢” > 1.

Let ¢ € [a, b] be a point where the first derivative |¢| is minimal: |¢'(c)| < |¢'(z)]
for all x € [a, b]. Since the second derivative is non-vanishing, it cannot be the case
that ¢ is an interior local minimum/maximum of ¢’, and hence either ¢/'(c) = 0 or
c is one of the endpoints a, b.

Assume first that ¢’(c¢) = 0, as in Figure 1. Then outside the interval (¢—d, c+9),

FIGURE 1. A local minimum of |¢'| where ¢/(c) = 0.

13We assume that ¢ has only finitely many critical points in [a,b], which would be the case if
it was real analytic.
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we have |¢'(x)| > §, because we assume ¢”’(z) > 1 for all © € [a,b]. Indeed, if
c+ 6 <z <bthen

d) =@ -0 = [ Wiz [a=r-czs

c

with a similar argument if a < 2 < ¢— 4. Now divide the range of integration [a, b]

into three subintervals
b c—0 c+0 b
/ @) gy :/ +/ +/
a a c—0 c+6

On the interval [a, c— 4], use |¢'| > § and the fact that ¢’ is monotonic increasing
(since ¢” > 1 > 0) to invoke Proposition 1.1 giving

‘/6_6 AO(®) g | < 4 1o
. I S (¢ @) e € lae—d]) A

SIS

1
A
with the same bound holding for fcb+ 5
On the middle interval (¢ — d,c + §), just estimate trivially [e*?(®)| < 1 giving

c+d )
’/ eZW(I)dI‘ < 26
c—0

Thus we find

’ irola) 8
D] < = 428,
/a e r| < 5/\4—
Taking 6 = 2/v/\ gives

b @) 8
e’ Idx‘<—.
/ <

It remains to deal with the case that ¢ is one of the endpoints, say ¢ = a and
¢'(a) # 0, say ¢'(xz) > ¢'(a) > 0 for all z € [a,b]. Then as before ¢'(x) > ¢ for
x € |a+ 4, b] since ¢’ > 1, and then the previous argument shows that

b ) a+d b ) 4 4
‘/ eW(w)d:c‘ < ‘/ ld:r‘ + ‘/ e“‘b@dx‘ <O+ — < —
a a a+0 oA \/X
on taking § = 2/v/\. O

Remark: A similar result holds for the case of degenerate critical points, if we
assume that for some k > 2, we have ¢(*) # 0 on [a, b]:

Proposition 1.3. There is an absolute constant ¢, > 0 so that for all smooth, real
valued ¢ with %) # 0 on [a, b],

b
. 1
ip(x) g ’ < Ck . _
‘/a Y= lmingeay |60 (@))7F T A[I7E

Exercise 1. The Bessel function Jo(z) = > _, ((;11!); (%)2m admits an integral

representation

1 ™ .
J()(Z) _ %/ e—zzsmtdt

—T

Show that as z — +o0, Jo(z) < 1/4/z.

We now include an amplitude
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Corollary 1.4. Assume that A(z) € C[a,b] is differentiable, that ¢ is smooth and

real valued, and that ¢*) # 0 on [a,b] (and if k = 1 also that ¢' is monotonic).
Then

)eiro@) g C (1A® /A’ )|dt !
’/ | < ey o (A0 [ 140l

Proof. For notational simplicity we treat the case k = 2. Denote

t
J,\(t)z/ @) g
a

So that Jy(t) = e***®) . Integrating by parts, we have

b b b
/ A(2)e™@) 4z = A0 In0)] - / A () (t)dt

Using our results for A =1 for Jy(t), we have

b 8 1

|\/minxe[a7b] 19" (z)] . \/W

‘A(t)J,\(t) = ‘A(b) / b eiwff)dm‘ < |A(b)

a

and
8

bA ; J bA 1 d
/ < ! ’
| aeinea< [ O e @ A

]

Corollary 1.5. Assume that the amplitude A and the phase function ¢ are smooth,
and that ¢ has finitely many critical points, all of them non-degenerate. Then

1
IN<K —, A=+
*) VA
the implied constant depending on A and ¢.

Proof. To use van der Corput’s Lemma, we use a smooth partition of unity to write
Loon = ) _¥;
J

where 1; are smooth, the support of each contains at most one of the critical points,
and when the support does contain a critical point z (at which ¢”(zg) # 0), we
take the support sufficiently small so that ¢” # 0 on all of supp;, while the
remaining 1; are supported away from the critical points. Hence we can write

2

= Z I;(N), LA = b (1) A(t)e D dt.
J 0

To bound the integrals I;(-y) where the support of ¢; does not include any critical
points, we use the principle of NON-stationary phase, with a smooth amplitude and
a phase function so that |¢'| > ¢; > 0 where ¢; = min(|¢/(x)| : = € supp?;) to
bound

L) < g =L
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For j such that supp ¢, contains a critical point (unique by assumption), we can
Corollary 1.4 with k£ = 2, since we have taken the support of such 9; so that ¢’ # 0
on supp ;. Hence for such j we have

Altogether we have proven I(\) < A~1/2, O

1.3. An asymptotic expansion: The method of stationary phase. It is
possible to go from upper bounds to asymptotic expansions. I will quote a typical
result (we will not explicitly use this).

Theorem 1.6. Assume that the amplitude A € C(R) is smooth and compactly
supported, and that the phase function (real valued and smooth) has a single critical
point zg € supp A, which is non-degenerate: ¢'(xo) =0, ¢"(xg) #0. Then

s ” o etre(xo)
I\ ~ et isign(o (“”0))14(950) . ,  as A — 4o0.
6" (zo)l VA

1.4. An application: The Fourier transform of the unit disk. We want to
bound the Fourier transform of the unit disk B(0,1) C R?: If y(z) = 1, |z| < 1,
and is zero otherwise, the Fourier transform is (we have dropped the factor of —2x
from the exponent)

W= [ s, e
|z|<1

Proposition 1.7.

N 1
X(6) < T4 P

Proof. We convert the 2-dimensional integral to a one-dimensional integral, to
which we can apply the van der Corput bound, by using Green’s theorem. Recall
that Green’s theorem says that for a bounded planar domain D, with a piecewise
smooth boundary 9D, we have for A, B € C?(R?),

/ (@—%)daj/\dy: Adx + Bdy
p \ Oz dy oD

where the line integral over the boundary 0D is taken counterclockwise.
For us, D = B(0,1) is the unit disk, with boundary D = S! the unit circle,
and we want to find A, B so that

g—f - % = eilazHby) ¢ — (a,b) # 0.
A solution is to take
. ibeilaz+by) b _igei(aztby)
I €1
Hence we find '
X&) = ﬁ /aD @@+ (bdx — ady).
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Parameterizing 0D = S' by arc-length: ~(t) = (cost,sint), which runs counter-
clockwise if ¢ runs from 0 to 2w, we obtain

7

2
W/ eilacostrbsint) (_pgint — qcost)dt =
0

X(¢) = 1([¢1)

|€|

where )
) = / Ae(£)e <0 gy
0

is an oscillatory integral, with amplitude

- — st — bsin

where ¢+ = (b, —a), and phase function

I3 acost+bsint

We want to apply our estimates on oscillatory integrals to this case. Note that
both the amplitude and the phase function depend on £/|¢|, so it is important to
make sure that our estimates our uniform in £/|¢| € S*.

The phase function has two critical points ¢'(t) = (§(¢), §/|§|) =0, when 4(¢) L
¢, i.e. when §(t) = ££+/|¢| (note 4 is a unit vector), with ¢+ = (b, —a), say at to
and therefore also at tg + .

We claim that these critical points are non-degenerate: The second derivative of
the phase function is

¢"(to) = (§(to), &)

Now further note that (¥,%) = 0 (which follows by direct computation or better
yet by differentiating |¥|? = 1, which is arc-length parameterization condition), and
since also &€ L 4(¢o), we must have

’?(to) i:‘if

iy
where x = |[§(to)|; note that here |§| = 1 so k = 1 and hence?
(1) = (it 57) = (7, ) = 1 20,

To use van der Corput’s Lemma, we use a smooth partition of unity to write

Ljo27] = Y1 + Y2 + U3

where 1); are smooth, 1y is supported in say (to — 0.1,t9 + 0.1), 91 is supported
in (tg + 7 — 0.1,t9 + 7 + 0.1) and 13 is supported away from the critical points
to,tg + 7. This gives

IN=L+1L+1I;s

with
27

L) = | (A Dat.
0

2For general D, |§| = k will be the curvature of dD; if we assume that the boundary 9D
has nowhere vanishing curvature, then this computation shows that the critical points are all
non-degenerate.
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For the integrals I;, I3 we can use van der Corput’s Lemma to deduce that

8 1

2
7 (14 . A'(t)|dt) ——.
(e = o o+ 01|+ [ 1))

‘We have

A = 16 S <l =1
and likewise |A’(¢)| < 1. Since ¢"(tg) = £1, we have
min(|¢” (t)] : to — 0.1 < t <ty +0.1) > ¢
for some positive constant ¢y. Hence we deduce from van der Corput’s Lemma that
there is some C > 0, independent of £, so that
R (€D 2lED] < g7z

To bound the third integral I3(vy), we use the principle of NON-stationary phase,
with a smooth amplitude and a phase function so that |¢’| > ¢3 > 0 (uniformly in

€) to bound

1
13<<W, YN > 1.

Altogether we obtain that uniformly in || > 1,
Cq
I < —
?) = VA
and hence s
O

Exercise 2. Show that in dimension 3, we have an estimate for the Fourier trans-
form of the unit ball

. 1
z(m,f)dS 3
e r< ———, &€eR.
/|x|<1 14 [¢[?

Hint: Here we can directly evaluate the Fourier transform in elementary terms!



